
!"#"$%#&'"()*+$,'-.*/0/+1$23'&3)'4
!"*$51**6$782$

!"#$%&'&($)*
+++,-"#$.&'&($),-"/*

0#1234522

Agenda

What is stream processing?

Why should you care?

Architecture Patterns

Technologies

Q&A

What is Stream Processing?

Streaming

Complex Event Processing

Event Sourcing

Change Data Capture

Server-Sent Events

Reactive programming

Oh my!

Generally speaking, streaming is…

processing events
in the order they occur.

What is Stream Processing?

Ok, why should you
care?

Because time
happens in order.

Master SlaveReplication
Binary log

Þles

Databases already know this.
(hint: it’s called replication)

Databases already know this.
(hint: it’s called replication)

Master Slave

Binary log
files

Binary log
files

Binary log
Þles

Databases already know this.
(hint: it’s called replication)

Master Slave

Binary log
files

Binary log
files

Binary log
Þles

Binary log
files

Binary log
files

Binary log
Þles

0 1 2 3 4 5 6 7 8 9 . . .

INSERT INTO employees...

UPDATE employees
SET salary = 1 MILLION DOLLARS

Master

Message
Queues

Web Servers

Devices

Binary log
Þles

Binary log
Þles

Binary log
Þles

Master

Message
Queues

Web Servers

Devices

Binary log
Þles

Binary log
Þles

Binary log
Þles

Master

Message
Queues

Web Servers

Devices

Binary log
Þles

Binary log
Þles

Binary log
Þles

Stream Processing

Architecture
Patterns

events

Batch Computation
(hadoop)

Speed (real-time) Layer

Serving Layer

Lambda Architecture

events

Batch Computation
(hadoop)

Speed (real-time) Layer

Serving Layer

Replay-able Log

Kappa Architecture

Technologies

RabbitMQ
http://www.rabbitmq.com/

¥ History

¥ Long history of successful deployments

¥ How it works

¥ Erlang-based implementation of the Advanced Message
Queuing Protocol (AMQP).

¥ Scales up well, but difficult to scale-out.

http://www.rabbitmq.com/

http://kafka.apache.org/

¥ History

¥ Developed at LinkedIn. Healthy developer community.

¥ How it works

¥ Built on the log-oriented processing concept.

¥ Partitions topics using a leader-follower model, coordinated by
Zookeeper.

¥ Low level and mid-level processing API.

Apache Kafka

http://kafka.apache.org/

https://storm.apache.org/

¥ History

¥ Created by Nathan Marz et al. while working at Twitter.

¥ How it works

¥ Processes events in parallel from a variety of sources.

¥ ÒAt-least-onceÓ reliability semantics.

¥ Structures processing as a graph of incremental processing

called a Topology.

¥ Blend of Java and Clojure

Apache Storm

https://storm.apache.org/

¥ Gotchas

¥ Debugging can become complex.

¥ Finicky configuration
¥ Neat integrations

¥ Summingbird Ð Advanced analytics

¥ Trident Ð Cleaner API, stateful processing
¥ See also:

¥ http://www.slideshare.net/DanLynn1/storm-as-
deep-into-realtime-data-processing-as-you-can-
get-in-30-minutes

Apache Storm

http://www.slideshare.net/DanLynn1/storm-as-deep-into-realtime-data-processing-as-you-can-get-in-30-minutes

http://samza.apache.org/

¥ History

¥ Originated at LinkedIn. Active development by Confluent.
¥ How it works

¥ Built on top of Kafka and YARN

¥ Provides a clean streaming API to logically connect different
streams of data

¥ Blend of Java and Scala

Apache Samza

http://samza.apache.org/

https://flink.apache.org/

¥ History

¥ Originated at Technical University of Berlin.

¥ Rapidly growing developer community.
¥ How it works

¥ Bills itself as an alternative to Hadoop MapReduce

¥ Primarily Java, but works will with Scala and Python

¥ Clean developer API

¥ Advanced execution planner

¥ Fault tolerance

Apache Flink

https://flink.apache.org/

http://spark.apache.org/

¥ History

¥ Originated at UC Berkley AMPLAB.

¥ Very active community.
¥ How it works

¥ Structures processing as a DAG of parallel computation.

¥ Can run on YARN or Mesos

¥ Stream processing is supported using small Òmicro-batchesÓ
(~1 second)

¥ Developed in Scala. Java and Python supported.

Apache Spark (Streaming)

http://samza.apache.org/

https://github.com/linkedin/databus

¥ History

¥ Originated at LinkedIn. Precursor to Kafka.
¥ How it works

¥ Based of of ÒDatabase Log miningÓ concept.

¥ Follows the replication log of source database(s)

¥ Uses ÒData RelaysÓ to replicate and transform data into
other repositories.

LinkedIn Databus

https://github.com/linkedin/databus

http://www.codefutures.com/agildata/

¥ History

¥ Successor to dbShards, CodeFutures successful relational
sharding product.

¥ How it works

¥ Extends dbShards high performance replication &
partitioning infrastructure to handle stream processing.

¥ Very simple SQL-based API (w/ pluggable UDFs)

¥ Advanced streaming execution planner based on Calcite.

¥ Mavenized Data Structures & Functions

¥ JDBC & ODBC

(obligatory sales slide)

http://www.codefutures.com/agildata

https://github.com/hailstorm-hs/hailstorm

¥ History

¥ Haskell-based improvement upon Storm.
¥ How it works

¥ Improves the implementation of exactly-once semantics in
Storm by leveraging Kafka and Zookeeper.

¥ Very early but promising. Useful for learning theory.

Hailstorm

https://github.com/hailstorm-hs/hailstorm
https://github.com/jasonjckn/essays/blob/master/exactly_once_semantics.md

dan.lynn@codefutures.com
@danklynn

Questions?

