
Orbitz Worldwide

When You Can’t Start From Scratch
Building a Data Pipeline with the Tools You Have

Oct 1, 2014

Agenda

page 1

• Introduction

• Motivation

• Consumption

• Storage at Rest

• Transport

• Dead Simple Data Collection

• Key Takeaways

About Us

• Steve Hoffman

• Senior Principal Engineer - Operations

• @bacoboy

• Author of Apache Flume Book (bitly.com/flumebook)

- Conference Discount until Oct 8

- Print books: qLyVgEb5d

- eBook - gON73ZL77

• Ken Dallmeyer

• Lead Engineer – Machine Learning

• We work at Orbitz – www.orbitz.com

• Leading Online Travel Agency for 14 years

• Always Hiring! @OrbitzTalent

page 2

• What we have:

• Big Website -> Mountains of Logs

• What we want:

• Finding customer insight in logs

• What we do:

• Spending disproportionate amount

of time scrubbing logs into

parsable data

• Multiple 1-off transports into

Hadoop

Motivation

page 3

Logs != Data

• Logs

• Humans read them

• Short lifespan – what’s broken now?

• Data

• Programs read them

• Long lifespan – Find trends over a period of time

• Developer changes logs ‘cause its useful to them -> breaks your MR

job.

page 4

Look Familiar?

20140922-100028.260|I|loyalty-003|loyalty-1.23-

0|ORB|3F3BA823C747FF17~wl000000000000000422c3b14201cdd0|3a

3f3b95||com.orbitz.loyalty.LoyaltyDataServiceImpl:533|Loya

lty+Member+ABC123ZZ+has+already+earned+USD18.55+and+is+eli

gible+for+USD31.45

page 5

{"timestamp":"1411398028260","server":"loyalty-003",

"pos":"ORB","sessionID":"3F3BA823C747FF17",

"requestID":"wl000000000000000422c3b14201cdd0",

"loyalityID":"ABC123ZZ”,"loyalityEarnedAmount":"USD18.55",

"loyalityEligibleAmount":"USD31.45"}

Are we asking the correct question?

• Not “How should I store data?”

• But, How do people consume the data?

• Through Queries? Hive

• Through Key-Value lookups? Hbase

• Custom code? MapReduce

• Existing data warehouse?

• Web UI/Command Line/Excel(gasp)?

Start with consumption and work backwards

page 6

Consumption

• Hive Tables turned out to be the Orbitz common denominator

• We like Hive because

• SQL ~= HQL – people understand tables/columns

• Its a lightweight queryable datasource

• Something easy to change without a lot of overhead

• Can join with other people’s hive tables

• BUT…

• Each table was its own MapReduce job

• Too much time spent hunting/scrubbing data than actually using it

page 7

Storage at Rest

• How can we generalize to our data feed to be readable by Hive?

• Options:

• Character delimited text files

- But brittle to change

- Cannot remove fields

- Order matters

• Avro records

- Schema defines table

- Tight coupling with transport to HDFS handoff or verbose passing schema

- Changes mean re-encoding old data to match new schema

• HBase

- Good for flexibility

- Key selection is very important and hard to change

- Bad for ad-hoc non-key querying

page 8

Storage at Rest

• Our solution:

• Use Avro with a Map<String, String> schema for storage

• A custom Hive SerDe to map Hive columns to keys in the map.

• Storage is independent from Consumption

• New keys just sit until Hive mapping updated

• Deleted keys return NULL if not there

• Only Requirements:

• Bucket Name (aka table name)

• Timestamp (UTC)

page 9

Storage at Rest

• Stored in

• hdfs://server/root/#{bucket}/#{YYYY}/#{MM}/#{DD}/#{HH}/log.XXXXX.avro

• Avro Schema: Map<String,String>

• Create external hive table:
CREATE EXTERNAL TABLE foo (

col1 STRING,
col2 INT

)
PARTITIONED BY (

dt STRING,
hour STRING

)
ROW FORMAT SERDE 'com.orbitz.hadoop.hive.avro.AvroSerDe’
STORED AS
INPUTFORMAT

'com.orbitz.hadoop.hive.avro.AvroContainerInputFormat’
OUTPUTFORMAT

'com.orbitz.hadoop.hive.avro.AvroContainerOutputFormat’
LOCATION ‘/root/foo’
TBLPROPERTIES(
'column.mapping' = ’col1,col2’
);page 10

Care and Feeding

• Issues

• Hive partitions aren’t automatically added. (Vote for HIVE-6589).

- A cron job to add a new partition every hour.

• Nice to Have

• Would be nice to extend schema rather than set properties

- col1 STRING KEYED BY ‘some_other_key’

page 11

https://issues.apache.org/jira/browse/HIVE-6589
https://issues.apache.org/jira/browse/HIVE-6589
https://issues.apache.org/jira/browse/HIVE-6589

Transport

• Lots of Options at the time

• Flume

• Syslog variants

• Logstash

• Newer options

• Storm

• Spark

• Kite SDK

• And probably so many more

page 12

Transport

• We chose Flume, since at the time it was best option

• HDFS aware

• Did time-bucketing

• Provided a buffering tier

- Inevitable Hadoop maintenance

- Isolates us from Hadoop versions and incompatibilities (less of an issue today)

• Have ‘localhost’ agent to simplify configuration

• Use provisioning tool to externalize configuration of where to send for the

environments

page 13

Transport Plan

• Application writes generic JSON payload using Avro client to local

Flume agent

• Local Flume agent forwards to collector tier

• Collector Tier to HDFS

• However, an additional Java agent on every application server = big

memory footprint

page 14

Transport Updated

• Application write JSON to local syslog agent

• (already there doing log work /var/log/*)

• Local syslog agent to flume collector tier

• Flume collector to HDFS

page 15

Care and Feeding

• Issues

• Hive partitions aren’t automatically added. (Vote for HIVE-6589).

- A cron job to add a new partition every hour.

• Flume streaming data creates lots of little files (Bad for NameNode)

- A cron job to combine many tiny poorly compresed files into 1 better compressed

avro file once per hour (similar to in functionality to HBase compaction)

- Create custom serializer to write Map<String,String> instead of default Flume

Avro record format.

• Syslog

- Need to pass single line of data in syslog format. Multiple lines, non-ascii, etc.

would cause problems. Just need to make sure JSON coming in has special

characters escaped out.

page 16

https://issues.apache.org/jira/browse/HIVE-6589
https://issues.apache.org/jira/browse/HIVE-6589
https://issues.apache.org/jira/browse/HIVE-6589

Dead Simple Data Collection

• Want a low barrier to entry. Think log4j or another simple API

public sendData(Map<String,String> myData);

But Beware of creating a new standard…

page 17

http://xkcd.com/927/

Dead Simple Data Collection

• Thought about using Flume log4j Appender, but would have to wrap

JSON payload creation anyway

• Logs != Data

• log.warn(DATA) ??

• We already were using ERMA which was close enough to this. May

not be right choice for you.

• Create custom ERMA monitor processor and renderer to create the

payload for syslog

- Make sure it was RFC5424

- Assemble JSON payload

- Add “default fields” like timestamp, session id, etc.

page 18

https://github.com/erma/erma

Dead Simple Data Collection

• But what about more complicated data structures?

• Flatten Keys with dot notation

• Hash?

• {a:{b:6}} {a.b:6}

• Arrays?

• {ts:4, data:[4,6,7]} {ts:4, data.0:4, data.1:6,
data.2:7, data.length=3}

• It depends… Again think consumption first – Hive tables are flat

page 19

Care and Feeding

• Issues

• Hive partitions aren’t automatically added. (Vote for HIVE-6589).

- A cron job to add a new partition every hour.

• Flume streaming data creates lots of little files (Bad for NameNode)

- A cron job to combine many tiny poorly compresed files into 1 better compressed

avro file once per hour (similar to in functionality to HBase compaction)

- Create custom serializer to write Map<String,String> instead of default Flume

Avro record format.

• Syslog

- Need to pass single line of data in syslog format. Multiple lines, non-ascii, etc.

would cause problems. Just need to make sure JSON coming in has special

characters escaped out.

• Application

- Whatever data emitter we choose, needs to be async

• Scaling and Monitoring

- Be aware that as we add more applications, we will need to scale

the Collectors and Hadooppage 20

https://issues.apache.org/jira/browse/HIVE-6589
https://issues.apache.org/jira/browse/HIVE-6589
https://issues.apache.org/jira/browse/HIVE-6589

Key Takeaways

• How you consume the data should drive your solution

• Decouple Storage from API and Transport

• If 100% persistence then use a DATABASE.

• Use in-memory when possible

• much faster than disk = less hardware you have to buy === value of the

data/ what is really lost if you lost an hour/day/all? how soon to recover

• Minimize transforms at source, en-route, and destination

• Minimize hops from Source to Destination

• Data as a Minimal Viable Product, not a data warehouse – grow

organically as your applications will.

page 21

Thanks

Thanks!

&

Questions?

page 22

